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Abstract. We study a cellular automaton which is based on a Markovian process. The
dynamics of the system is followed through the analysis of the associated Hamming distance
as a function of time. The Hamming distance behaves in a peculiar plateau-like manner which
exhibits the existence of memory in the time evolution of a damage. Consequently, this type
of behaviour which has been found in complex systems does not necessarily arise from the
complexity of the system. Analytical expressions are obtained for the probability of having
finite-size plateaux as well as for the probability distribution of the size of the plateaux.

1. Introduction

Time correlation effects are present in a huge number of complex dynamical systems. One
way to characterize the presence of correlation effects is to study the spreading of a damage
introduced in the system. This may be achieved through the analysis of the time evolution
of two different replicas of the system presenting a small difference, for instance, in the
initial conditions or in the random sequence which generates the evolution of the system.
In order to characterize the damage, the quantity whose time evolution is typically followed
is the Hamming distance, see for instance [1]. This quantity behaves, as a function of time,
in a more or less noise-like manner, like the quantities which characterize complex systems
such as the discrete sandpile model [2].

A simple model, based on a Markovian process, was recently introduced by Tsalliset al
[3] as a good prototype for correlation effects on damage. By means of computational
simulations, they showed that the time evolution of the associated Hamming distance
presents sequences from noise-like to plateau-like ones, for different values of the external
parameters. In the present work, we derive an analytical expression for the probability of
finding finite-size plateaux which confirms the results obtained previously through numerical
simulations [3]. Moreover, we also describe analytically the distribution of probabilities
(P (τ)) of finding plateaux of sizeτ and the momenta ofP(τ).

The analytical results for this simple model show that a non-trivial behaviour such as
the presence of plateaux in the Hamming distance (behaviour indeed found in systems with
self-organized criticality as the sandpile model in [2]) is not necessarily related to complexity
and it can arise even in a simple Markovian-like process like the one herein focused. Given
the current importance of complex systems, it is relevant to be able to determine whether a
given behaviour results from the complexity of the system or not.
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2. The prototype

As described in [3], we assume a semi-infinite linear chain of sites (i = 0, 1, 2, . . .) occupied
by binary random variables{Si} (Si = 0, 1, ∀i). The chain is defined through the following
construction rules:

• S0 = 1
• Si+1 = Si with probability p (thus Si+1 6= Si with probability 1− p), for all

i = 0, 1, 2, . . ..
We consider two equivalent replicas of the system{SA

i } and{SB
i }, constructed with the

same value ofp but generated with different random sequences.
In order to study the time dynamics of the damage evolution in the system, we define

the following Hamming distance:

H(t) = 1

L

i0+L−1∑
i=i0

|SA
i − SB

i | (1)

whereL is the length of the window we will analyse,i0 ≡ J t , J being a fixed positive
integer number andt the discrete time (t = 0, 1, 2, . . .). Then, the prototype can be
interpreted as a cellular automaton of sizeL. In fact, once the chain configuration is
defined by the construction rules, we look at windows of sizeL and the temporal evolution
of the automaton is given by the fact that the window starts at a pointi0 which increases
linearly with time.

The time evolution of the Hamming distance for different values of the external
parameters is shown in figure 1. As already discussed in [3], the Hamming distanceH(t) as
a function of time fluctuates exhibiting plateaux. Thus, it is specially interesting to analyse
the behaviour of the distribution of plateaux present in the fluctuations of the Hamming
distance. We say that there is a plateau at timet if H(t) = H(t + 1) and the plateau is of
lengthτ if H(t −1) 6= H(t) = H(t +1) = · · · = H(t + τ −1) = H(t + τ) 6= H(t + τ +1).
For fixed values of the external variables (p, J, L), H(t) yields a distribution of plateaux
P(τ) (

∑∞
τ=0 P(τ) = 1)) and the probability of having finite-size plateaux isM(p, J, L) ≡

1 − P(0).

3. Results

The probability distribution of the binary random variableSi is

P(Si) = piδ(Si − 1) + [1 − pi ]δ(Si) (2)

wherepi is the probability of beingSi = 1. It is easy to find thatpi verifies the recurrence
relationpi = (2p − 1)pi−1 + 1−p, with p◦ = 1, whose solution ispi = ((2p − 1)i + 1)/2.

From equation (2), the mean value ofSi is 〈Si〉 = pi , therefore, it follows directly from
equation (1) that the mean value of the Hamming distance is

〈H(t)〉 = 1

2
− (2p − 1)2J t

8Lp(1 − p)
(1 − (2p − 1)2L). (3)

So that, in the limitL → ∞, for 0 < p < 1, we have:

lim
L→∞

〈H(t)〉 = 1
2 (4)

hence, there are no long-range correlation effects for any value ofJ and 0< p < 1.
For a more detailed study, we want to know the probability of having finite size plateaux,

M(p, J, L), which is the probability thatH(t) = H(t + 1) for an arbitrary timet . From
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Figure 1. Temporal evolution of the Hamming distance forp = 0.9, L = 30 andJ = 1 (a), 2
(b) and 30 (c).

the analysis of all possible configurations producingH(t) = H(t + 1) (see the appendix),
we obtain an analytical expression forM(p, J, L):

M(p, J, L) = M(R, a, b) = 1
2R2(a−1)(1 + W1(R, a) + (2R − 1)b−a+1[1 + W2(R, a)])

(5)

wherea ≡ min{J, L}, b ≡ max{J, L} andR ≡ R(p) = p2 + (1 − p)2,

W1(R, a) = 1
2

a−1∑
l=1

(σ3(R, a, l) + 2σ2(R, a, l) + σ1(R, a, l))2 (6)

and

W2(R, a) = 1
2

a−1∑
l=1

(σ3(R, a, l) − σ1(R, a, l))2 (7)
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with

σ1(R, a, l) =
l−1∑
k=1

(
l − 1

k

)(
a − l − 1

k − 1

) (
1 − R

R

)2k

(8)

σ2(R, a, l) =
l−1∑
k=0

(
l − 1

k

)(
a − l − 1

k

) (
1 − R

R

)2k+1

(9)

σ3(R, a, l) =
l∑

k=1

(
l − 1

k − 1

)(
a − l − 1

k

) (
1 − R

R

)2k

. (10)

The comparison of these results with the experimental ones as obtained in [3] shows
an excellent agreement within the standard deviation of the values from simulations. For a
wide range of values of the external parameters, the maximal percentual difference between
theoretical and experimental values ofM was of the order of 1%.

From equations (5)–(10), in the particular casep = 1
2 (when 1−R

R
= 1), by means of

the property:
q∑

i=0

(
m

i

)(
n

q − i

)
=

(
m + n

q

)
we obtain:

M(R = 1
2, a, b) = 1

4a

(
2a

a

)
(11)

which corresponds to the result obtained, through another treatment, in [3], in the discussion
of the completely random case (p = 1

2).
If p = 0, 1, thenM = 1, ∀J, L.

Figure 2. M(p, J, L) versusp as obtained from equation (5). (a) J = 1 and different values
of L; (b) J = 3 and different values ofL > J . Values ofL are indicated on the figure. Scales
are the same in both graphs for comparison.

For J = 1 (figure 2(a)), M has a local minimum atpmin = 1
2, beingMmin = M(pmin) =

1
2, ∀L > 1. For 0< p < 1 andp 6= 1

2, M decreases for increasingL, i.e. the concavity of
the curve increases, such that asL → ∞, M → 1

2, for 0 < p < 1.
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For 1< J 6 L (illustrated in figure 2(b)), M has a local maximum atp = 1
2, and two

absolute minima atpmin and 1−pmin, such that, for a given value ofJ , Mmax is independent
on L while pmin andMmin = M(pmin) = M(1 − pmin) decrease asL increases down to a
constant value. This value decreases for increasing values ofJ . In the limit J → ∞ (hence
L → ∞), Mmax → 1√

πJ
→ 0, pmin → 0, Mmin → 0. Thus, whenp approaches either zero

or unity, correlation persists for increasing values ofJ , while correlation effects disappear
(M → 0) for J → ∞ (hence,L → ∞).

Other cases are reduced to the previous ones recalling thatM is a symmetrical function
of J andL, i.e. M(p, J, L) = M(p, L, J ).

In sum, we observe thatM varies gradually with the model parameters. Therefore, it
does not play the role of an order parameter, in contrast with the remark in [3].

Finally, we want to determine the probability distributionP(τ), for 0 < p < 1. From
the preceding discussion we note that the probability of having a plateau at timet , that is
M = pr(H(t) = H(t + 1)), is independent oft for any value of the external parameters.
Recalling also that there is a plateau of lengthτ if H(t − 1) 6= H(t) = H(t + 1) = · · · =
H(t + τ − 1) = H(t + τ) 6= H(t + τ + 1), then it follows that:

P(τ) = τ(1 − M)2Mτ for τ > 1 (12)

which verifies
∑∞

τ=1 P(τ) = M.
The mean size of the plateaux is〈τ 〉 = ∑∞

τ=0 τP (τ), then, we have:

〈τ 〉 = M(1 + M)

1 − M
. (13)

Straightforwardly, thenth momenta ofP(τ) (〈τn〉) may be obtained from the following
recurrence relation derived from equation (12):

〈τn〉 = M
∂〈τn−1〉

∂M
+ 2M

1 − M
〈τn−1〉 n > 1. (14)

Solving equation (14), we obtain:

〈τn〉 = M

(1 − M)n
Pn(M) (15)

where Pn(M) is a polynomial of ordern in the variableM whose coefficients may be
obtained recursively from the triangle in table 1.

In particular, after calculating the square deviationσ 2
τ , we get the ratio

〈τ 〉
στ

= 1 + M√
2 + (1 − M)(1 + M)2/M

. (16)

The distribution of probabilities of the plateau size,P(τ), presents a maximum at
τmax ∼ −1

ln M
, then τmax increases with increasingM and so does the mean size of the

plateaux〈τ 〉. Above τmax, P(τ) decreases following a power law with exponentτ . Its
standard deviation is such that 06 〈τ 〉

στ
6

√
2, 〈τ 〉

στ
increasing for increasingM and being

unitary for M ∼ 0.75.

4. Discussion

The Hamming distance associated to the present prototype behaves as a function of time in a
more or less noise-like manner (figure 1). From figure 2, we observe that the probabilityM

of finding finite-size plateaux varies gradually with the model parameters, i.e. the behaviour
of the system varies gradually from noise-like to plateau-like. Although the prototype
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Table 1. Coefficientscn,i of the polynomialPn(M) = ∑n
i=0 cn,iM

i . The coefficients ofPn are
obtained from those ofPn−1 by adding the latter multiplied by integer factors as indicated by
the arrows.

i

n 0 1 2 3 4

1 ©1 ©1
↓×1 ↘×2 ↓×2 ↘×1

2 ©1 ©4 ©1
↓×1 ↘×3 ↓×2 ↘×2 ↓×3 ↘×1

3 ©1 ©11 ©11 ©1
↓×1 ↘×4 ↓×2 ↘×3 ↓×3 ↘×2 ↓×4 ↘×1

4 ©1 ©26 ©66 ©26 ©1
↓×1 ↘×5 ↓×2 ↘×4 ↓×3 ↘×3 ↓×4 ↘×2 ↓×4 ↘×1

is based on a typical Markov process, the introduction of the parametersJ and L puts
into evidence a non-trivial behaviour also observed in self-organized criticality. In fact,
for appropriate values of the model parameters, it is possible to mimic the plateau-like
behaviour of the Hamming distance associated to the discrete sandpile model [2] (compare
figure 1(b) with figure 1 of [2]). Thus, that kind of behaviour is not necessarily related to
complexity and may simply arise from some Markovian process involved. Our analytical
results may help to understand the origin of such time correlation.

Connections between spread of damage and relevant thermal equilibrium quantities of
discrete statistical models have been established recently [4–6]. In particular, for the Ising
model, relations between the Hamming distance and some of their thermal quantities are
found [4]. The relevance of this correspondence relies on the fact that they provide a
new approach in order to calculate thermostatistic quantities. Therefore, the present results
may lead to a better understanding of correlation effects in statistical systems and their
consequences in relation to critical phenomena.
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Appendix. Determination of M (p, J , L)

In order to calculate the probability thatH(t) = H(t + 1) for an arbitrary timet , let us
rewrite equation (1) as

H(t) = 1

L

Jt+L−1∑
i=J t

hi (A1)

wherehi = |SA
i − SB

i |. ComparingH(t) with H(t + 1), we only need to consider their
non-common terms. For a systematic analysis, let us first study the special caseJ = 1 and
later the wider caseJ > 1.
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A.1. CaseJ = 1

In this case, the non-common terms areht andht+L, ∀L. Therefore:

M(p, 1, L) = pr(ht = ht+L). (A2)

We consider arraysai =
[

SA
i

SB
i

]
which represent the values of the random variableSi

on the two replicasA andB. The possible arrays are:a1 =
[

0
0

]
, a2 =

[
1
1

]
, a3 =

[
0
1

]
,

a4 =
[

1
0

]
. Thus, from equation (A2), we have:

M(p, 1, L) =
2∑

α,β=1

pr(at = aα ∧ at+L = aβ) +
4∑

α,β=3

pr(at = aα ∧ at+L = aβ). (A3)

By considering the prototype construction rules, it follows:

pr(Si+k = Si) = (1 + (2p − 1)k)/2 ∀ i, k > 0 (A4)

hence,

pr(Si+k 6= Si) = (1 − (2p − 1)k)/2.

From equation (A4) and taking into account that the values ofSt+L and St are not
independent, we have:

p++ =
(

1 + (2p − 1)L

2

)2

(A5)

p−− =
(

1 − (2p − 1)L

2

)2

(A6)

p+− = p−+ = 1 − (2p − 1)2L

4
(A7)

wherep++, p−− andp+− (p−+) are, respectively, the probabilities that either both, none
or one of the elements of the arraysat andat+L be equal.

Therefore, by substituting equations (A5) and (A6) in equation (A3), we get:

M(p, 1, L) = (1 + (2p − 1)2L)/2. (A8)

A.2. CaseJ > 1

For the caseJ > 1, in order to compareH(t) with H(t + 1), we consider two cases: (a)
L > J and (b) 16 L 6 J .

A.2.1. Subcase (a):L > J . Now, we must consider arrays of 2× J elements, e.g.[ J︷ ︸︸ ︷
01· · · 1
11· · · 0

]
. In this caseH(t) and H(t + 1) share L − J terms. Thus, we must

compareJ terms: (hJ t , . . . , hJ t+J−1) with (hJ t+L, . . . , hJ t+L+J−1). In order to perform
this comparison, we consider pairs of 2× J -arrays corresponding to [aJ t , . . . , aJ t+J−1]
versus [aJ t+L, . . . , aJ t+L+J−1].

For a given array, let us calll (0 6 l 6 J ) the number of columns formed by equal

elements (i.e. either

[
0
0

]
or

[
1
1

]
). Since we are interested in the configurations giving
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H(t)=H(t + 1), we have to consider only pairs of arrays of 2× J elements with the same
value of l which will have the same Hamming distanceJ − l. So that we calculate the
contributionsMl corresponding to each value ofl to the probabilityM. We have:

Ml = pr(hJ t + · · · + hJt+J−1 = hJt+L + · · · + hJt+L+J−1 = J − l)

=
∑

all arrays (J,l)

pr([aJ t , . . . , aJ t+J−1]J,l)

×pr([aJ t+L, . . . , aJ t+L+J−1]J,l/[aJ t , . . . , aJ t+J−1]J,l) (A9)

subindicesJ and l in the arrays indicate the total number of columns and the number of
columns with equal elements, respectively. If incompatible with the form of the array, then

pr(arrayJ,l)=0, e.g. pr

([
1 · · · 0
0 · · · 0

]
J,J

)
= 0, since in this case (l = J ) all columns should

have identical elements.
Besides, we have

pr([aJ t , . . . , aJ t+J−1]J,l)pr([aJ t+L, . . . , aJ t+L+J−1]J,l/[aJ t , . . . , aJ t+J−1]J,l)

= pr(aJ t )pr([aJ t , . . . , aJ t+J−1]J,l)pr([aJ t+L, . . . , aJ t+L+J−1]J,l)

×pr(aJ t+L/aJ t+J−1) (A10)

where the probabilities will be defined as follows:
• pr(aJ t ) in equation (A10) is the probability that the first column of the first array (i.e.

2 × 1 array at positionJ t) be equal to a givenaα, 1 6 α 6 4.
• The probability pr(arrayJ,l) in equation (A10), is the probability of having two given

sequences of lengthJ corresponding to rowsA and B of the array. This probability is
not that of finding the sequences at a given position of the samples but that of just having
a given sequence without caring for the position. Thus, if we interchange all 1’s in the
array by 0’s and vice versa, as well as if we interchange rows, or reverse the order of the
columns, the probability is the same.

• In order to calculate the conditional probability pr(aJ t+L/aJ t+J−1) in equation (A10),
we must now consider the last column of the first array and the first column of the second
array. Here, the ‘distance’k between the arrays, that is the difference between the first site
of the second array (J t +L) and the last site of the first array (J t +J −1), isk = L−J +1,
so that we just have to replaceL in equations (A5)–(A7) byL − J + 1. Thus, let us define
the following probabilities:P +

J is the probability that the last column of the first array and
the first column of the second have two or no equal elements andP −

J is the probability that
those columns have only one equal element:

P +
J = p++

J + p−−
J = (1 + (2p − 1)2(L−J+1))/2

P −
J = p+−

J + p−+
J = (1 − (2p − 1)2(L−J+1))/2

wherep++
J , p−−

J , p+−
J and p−+

J were calculated in the same way as the probabilities in
equations (A5)–(A7), corresponding toJ = 1, but substitutingL by L − J + 1.

Considering that the arrays withl = λ and l = J − λ (with 0 6 λ 6 J ) are obtained
one from the other by interchanging 0’s and 1’s in one of the rows and also considering
that

∑4
α=1 pr(aJ t = aα) = 1, then, from equations (A9) and (A10), the contribution

Ml,J−l = Ml + MJ−l is:

Ml,J−l = 2P −
J pr

([
0 · · ·
0 · · ·

]
J,l

)
pr

([
0 · · ·
1 · · ·

]
J,l

)
+P +

J

((
pr

([
0 · · ·
0 · · ·

]
J,l

))2

+
(

pr

([
0 · · ·
1 · · ·

]
J,l

))2)
(A11)
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where, there is an additional1
2 factor if l = J − l.

Since

pr

([
0 . . .

1 · · ·
]

J,l

)
= pr

([
0 · · ·
0 · · ·

]
J,J−l

)

then, we just need to know pr

([
0 · · ·
0 · · ·

]
J,l

)
.

? For l = J, 0, from equation (A11), we obtain

Ml=J,0 = P +
J ×

(
pr

([
0 · · ·
0 · · ·

]
J,J

))2

.

It is easy to see that

pr

([
0 · · ·
0 · · ·

]
J,J

)
= (p2 + (1 − p)2)2(J−1)

then, we have:

Ml=J,0 = (1 + (2p − 1)2(L−J+1))/2(p2 + (1 − p)2)2(J−1).

? Now, let us calculate pr

([
0 · · ·
0 · · ·

]
J,l

)
when,l 6= J, 0. Let us define

VJ,l = pr

([
0 · · ·
0 · · ·

]
J,l

)
(A12)

WJ,l = pr

([
0 · · ·
1 · · ·

]
J,l

)
(A13)

and

R = R(p) = p2 + (1 − p)2. (A14)

It is easy to see that:

VJ,l = RVJ−1,l−1 + (1 − R)WJ−1,l−1 (A15)

WJ,l = (1 − R)VJ−1,l + RWJ−1,l . (A16)

Then, we get the following recurrence relation:

VJ,l = RVJ−1,l−1 + (1 − R)VJ−1,J−l (A17)

with solution:

VJ,l = RJ−1(σ1(R, J, l) + σ2(R, J, l)) (A18)

where

σ1(R, J, l) =
l−1∑
k=1

(
l − 1

k

)(
J − l − 1

k − 1

) (
1 − R

R

)2k

(A19)

σ2(R, J, l) =
l−1∑
k=0

(
l − 1

k

)(
J − l − 1

k

) (
1 − R

R

)2k+1

(A20)

thus,

WJ,l = VJ,J−l = RJ−1(σ3(R, J, l) + σ2(R, J, l)) (A21)
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where

σ3(R, J, l) = σ1(R, J, J − l) =
l∑

k=1

(
l − 1

k − 1

)(
J − l − 1

k

) (
1 − R

R

)2k

. (A22)

Note also thatσ2(R, J, J − l) = σ2(R, J, l).
By substitution in equation (A11) we obtain:

Ml,J−l = 1
2(VJ,l + WJ,l)

2 + 1
2(2p − 1)2(L−J+1)(VJ,l + WJ,l)

2. (A23)

Then:

M = MJ,0 +
[ J

2 ]−1∑
l=1

Ml,J−l + 1
2M[ J

2 ],[ J
2 ] = MJ,0 + 1

2

J−1∑
l=1

Ml,J−l . (A24)

A.2.2. Subcase (b): 16 L 6 J . In this case we have two arrays of 2× L elements and
k = J − L + 1. Since the calculation ofM will only depend on the size of the arrays and
on the ‘distance’k, then case (b) is reduced to case (a) just by inverting the roles ofJ and
L, beingM(p, J, L) = M(p, L, J ).
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